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Abstract
Fetal biometry (FB) and amniotic �uid volume (AFV) assessments are two crucial yet repetitive tasks of
fetal ultrasound screening scans that help detect potential life-threatening conditions, however, they
suffer from reproducibility and reliability issues. Advances in deep learning have led to new applications
in measurement automation in fetal ultrasound, showcasing human-level performances in several fetal
ultrasound tasks. However, most of the studies performed are retrospective “in silico” studies and few
include African patients in their dataset.

Here we develop and prospectively assess the performance of deep learning models for an end-to-end FB
and AFV automation from a newly constructed database of 172 293 de-identi�ed Moroccan fetal
ultrasound images in addition to publicly available datasets. They were tested on prospectively acquired
video clips from 172 patients forming a consecutive series gathered at four healthcare centers in
Morocco.

Our results show the 95% limits of agreement between the models and practitioners for the studied
measurements were narrower than reported intra and inter-observer variability for human expert
sonographers for all the studied parameters.

This means that these models could be deployed in clinical conditions, to alleviate time-consuming,
repetitive tasks, and to make fetal US more accessible in limited resources environments.

Introduction
Ultrasound (US) is a low-cost, non-invasive imaging modality that has been shown to independently
reduce fetal mortality by up to 20%1. Yet, 99% of preventable fetal and maternal deaths occur in
developing countries where access to fetal ultrasound is scarce, and more than a third of operators have
no training at all2,3. The WHO recommends at least one US examination for each pregnancy4, however,
there is a shortage of physicians and sonographers able to perform this examination primarily in
countries of the Global South5. These countries are not the only ones suffering from excessive and
increasing fetal and maternal mortality. The USA ranks last amongst industrialized countries in terms of
maternal mortality with notable ethnic differences: African-American women are three times more likely
to die during pregnancy compared to non-Hispanic White women6. Thus, democratizing access to
healthcare resources dedicated to fetal and maternal health, regardless of ethnicity, socioeconomic
status, and geographic location is a global healthcare priority.

 The current US machines market is ongoing a dynamic positive change with the advent of low-cost
point-of-care portable US devices that offer quality images at a fraction of the cost of those sold by
traditional manufacturers. As such, US devices are becoming more affordable in low-income countries.
But this “hardware” technological transformation would only solve part of the problem. More ultrasound
devices in inexperienced hands will not bene�t patients. E�cient tools that would enable minimally
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trained operators to perform parts or the entirety of fetal US scans would radically change how we
engage with fetal and maternal health. 

Two vital and systematic assessments of all routine screening scans are fetal biometry (FB) and
amniotic �uid volume (AFV). FB and AFV help detect and manage potential life-threatening conditions.
On the one hand, FB is used to determine gestational age (GA), which is essential to guide therapeutic
interventions in the case of pre-term labor or pre-eclampsia and detect pregnancy-related complications,
such as fetal growth restriction (FGR). FGR, sometimes de�ned as the  “failure of the fetus to meet its
growth potential due to a pathological factor”7, is responsible for 30% of all stillbirths and poor neonatal
outcomes. Its diagnosis can rely solely on US FB assessment when abdominal circumference (AC) or
estimated fetal weight (EFW) falls below the 3rd percentile8,9. On the other hand, AFV abnormalities are
strongly associated with increased mortality in the case of low AFV (oligohydramnios)10. The single
Deepest pocket (SDP) method has proved to be as reliable as the amniotic �uid index method (AFI) for
AFV assessment  but to cause fewer false positive diagnoses for oligohydramnios and therefore,
fewer unnecessary labor inductions.

FB coupled with AFV assessments are time-consuming, repetitive, and error-prone tasks, and several
studies have stressed the need for quality audits to ensure measurements reproducibility and lower inter
and intra-observer variability11–13.

Advances in deep learning (DL) applied to medical imaging have sparked interest in its application to
measurement automation in fetal ultrasound, with studies showcasing human-level performances of DL
models in standard plane classi�cation and segmentation14–17. Most of them are retrospective “in silico”
studies conducted on Caucasian populations on �xed images except for a few exceptions18. 

 An end-to-end FB and AFV assessment work�ow automation could potentially alleviate practitioners’
burden, increase ultrasound’s sensitivity and speci�city, and even enable non-trained healthcare workers
to perform these measurements in resource-stranded environments.

Results
Data 

In order to develop and prospectively test DL models designed to fully automate FB and AFV assessment,
the models were trained on a newly constructed database of 172,293 de-identi�ed fetal ultrasound
images that were collected from 12,356 US examinations performed in six health centers in two different
cities of Morocco between 2015 and 2021. In addition publicly available datasets, using the following
ultrasound machines: General Electric’s Voluson E6, E8, E10, S8 and S10, and Aloka17. 

Within the collected data, 30,249 2D standard biometry planes of the abdomen, brain, and femur were
preprocessed and annotated based on the pixelated annotations (images containing calipers - acronyms
referring to biometry measurements) and annotated. In addition, ground truth masks were automatically
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extracted at the preprocessing step to alleviate the work of annotators in the segmentation tasks. In total,
�fteen human annotators (ranging from medical students to Radiology and Obstetrics professors)
participated in the annotation process using our bespoke annotation platform based on the open-source
tool Label Studio19 that we adapted to our needs. Each annotation included the type of standard plane
(abdomen, brain, femur) and some of the quality criteria associated with it as described by the
International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) guidelines20 (Table 1) and
polygonal segmentation in the case of the femur. A further distinction between transthalamic,
transcerebellar and transventricular planes was made by the annotators. Quality criteria such as the
zoom (head, abdomen, femur occupying more than half of the image – caliper placement – angle of the
femur to the horizontal < 45 °) were omitted in the annotation process. Instead, their detection was
automated through fetal structure segmentation: calculating the surface ratio of the structure to the
whole image or the angle of the femur to the horizontal to determine conformity to the criteria described
by Salomon et al21 (Table 1). That step was designed to ensure that the models select the best suitable
plane on a given video loop, detecting the presence or absence of the quality criteria, and displaying them
with the measurement, allowing an insight into the model’s choice as well as a correction if necessary.

Images were also annotated according to the presence or absence of an AF-pocket de�ned as an in-utero
�uid pocket free of fetal parts or umbilical cord. In the case of the presence of the AF pocket, annotators
were asked to segment it manually.

Figure 1 summarizes the amount of annotated data for the segmentation of the three biometric
structures and their classi�cation based on their respective quality criteria, along with the number of
individual measurements in the annotated data for the classi�cation and segmentation of AF pockets.

Table 1: Criteria for score-based biometry plane assessment developed by Salomon et al21 Models’
performance on the retrospective data
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Segmentation and Classi�cations Models

We assessed the performances of our models on the retrospective test sets comparing them to the
experts’ annotations for standard plane detection, quality criteria detection, fetal structure segmentation
and AF-pocket detection and segmentation.

For the standard plane detection and anatomical regions (brain, abdomen, and femur) segmentation, four
MASK-RCNN models were �netuned (R_101_C4_3x, R_101_DC5_3x, R_50_C4_3x, R_50_DC5_3x). The
R_50_DC5_3x model achieves the best performance with an average DICE score of 0.89 and an
Intersection over Union (IoU) score of 0.82 versus 0.96 and 0.90 respectively reported with the FUVAI
model14 (�gure 2). The Segmentation of the brain region achieved the best performance with a DICE
score of 0.95 and an IoU of 0.91.

For each biometry plane, classi�cation models for quality criteria detection were assessed on the test set
of the retrospective data (�gure 3). Assessment of the quality of the standard biometry plane allows for
better reproducibility of the AC measurement, we assessed 4 quality criteria (kidneys not visible (A_KN),
plane showing portal sinus (A_PS), plane showing stomach bubble (A_SB), symmetrical plane (A_SYM))
leaving out the image zoom quality criteria that is the only one that is not qualitative and can be inferred
directly from the abdomen segmentation. Based on three �ne-tuned models (INCEPTIONV3, RESNET50V2
and VGG16), INCEPTIONV3 shows the best results for all the criteria with an average area under the curve
(AUC) of 0.86. The results also show that A_SB criterion is detected better compared to other criteria with
an AUC of INCEPTIONV3 of 0.93. 

For the classi�cation of the brain plane, �ve quality criteria were assessed: cerebellum not visible (B_CB),
plane showing cavum septum pellucidity (B_CS), plane showing posterior horn of lateral ventricles
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(B_PVV), symmetrical plane (B_SYM) and plane showing thalami (B_TH). Similarly, the 3 classi�cation
models were �netuned for this task. They show very similar results with an average AUC of 0.83. The
results also show that the B_CB criterion is well detected compared to other criteria with an AUC of
INCEPTIONV3 of 0.95 (�gure 3).

For the femoral plane, the performances of the model designed to detect if both ends of the femur are
clearly visible were poor as inter-observer variability was high in the training set, thus, it was not used for
image quality scoring. For the femoral plane on the prospective part of the study, the size, subsequent
femur to image sizes ratio, and angle of the femur were directly obtained from the femur segmentation
stage and kept as the only quality criteria.

For the AF Pocket classi�cation, we compared the �netuned models (RESNET50V2, INCEPTIONV3 and
VGG16) on the retrospective test set (�gure 4). The results show almost equivalent AUC scores of 0.89.
Similarly, we compared 7 �netuned MASK-RCNN models ('R_101_C4_3x',   'R_101_DC5_3x',
 'R_101_FPN_3x', 'R_50_C4_3x', 'R_50_DC5_3x', 'R_50_FPN_3x', 'X_101_32x8d_FPN_3x') for the
segmentation of the AF pocket region (�gure 4). The results show that 'X_101_32x8d_FPN_3x' achieved
the best performance with a DICE score of 0.78 and an IoU of 0.71 versus a DICE of 0.877 for the state of
the art model by Cho et al.33 who tested the model on only 125 images.

From this retrospective study, we adopted the �netuned R_50_DC5_3x model for the segmentation of the
fetal structures, the �netuned INCEPTIONV3 models for the quality criteria and the AF pocket detection,
and the �netuned X_101_32x8d_FPN_3x model for the AF pocket segmentation. These models will then
be evaluated on the prospectively acquired data.

Models performance on the prospective evaluation

Study population

 From October 2021 to April 2022, 172 patients with singleton pregnancies were included in our
prospective study. Multiple pregnancies were not an exclusion criterion, and patients were included even
in the case of partially complete examinations.   However, duplicates and patients without an image nor
cine-loop available or no corresponding ground truth measurement obtained were excluded (�gure 5). In
total, the study gathered: 142 different cine-loops containing a femoral plane; 144 containing an
abdominal plane; 123 containing a cephalic plane; and 90 containing AF-pockets.

 The US machines and healthcare centers from which the prospective data differed from those of the
retrospective data were retained. Three of the four centers where the prospective part of the study was
conducted did not participate in the retrospective data collection. Several US machines used in the
prospective testing were not present in the retrospective data as well: Mindray DC 40 and Resona 6,
Philips Medical Systems A�nity 50W and 70G, GE Voluson P8.
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When possible, EFW and GA were computed from all measurements using the recommended Hadlock
and Intergrowth formulae29,30 and all necessary measurements performed by the doctors with the
corresponding available cine-loops.

Hadlock formula for EFW estimation29: 
Intergrowth recommended formula for GA estimation > 14 weeks30: 

Overall, the mean GA estimated by the operators was of 30 weeks and 3.13 days ± 6 weeks and 3.1 days
(range: 15 weeks and 2 days – 41 weeks and 2 days), the mean measured HC, BPD, AC, FL, EFW and SDP
were respectively of 26.37 ± 5.88 cm (range: 11.29 – 34.71 cm), 7.41 ± 1.72 cm (range: 3.09 – 10.07 cm),
23.98 ± 6.58 cm (range: 8.95 – 38.18 cm), 5.28 ± 1.44 cm (range: 1.52 – 7.86 cm), 1606.78 ± 957.56 g
(range: 108.81 – 3783.86 g and 5.25 ± 2.22 cm (range: 2.15 – 17.37 cm).

The models segmented each relevant anatomical region and then extracted the planes with the highest
composite score, including quality score according to the ISUOG subjective quality criteria, the zooming
of the image inferred from the anatomical segmentation to total image ratio, and the con�dence of the
model’s prediction (�gure 6).

The models were able to extract measurements from all the videos containing standard biometry planes.
The 95% limits of agreement expressed in percentage using the Bland-Altman method were of 2% for HC,
4.2% for BPD, 3 % for AC, 5.1% for FL, 2.7% for GA, 8% for EFW and 26 % for SDP. All percentages found
are narrower than reported inter and intra observer limits of agreements among sonographers (HC: 3.0%,
AC: 5.3%, FL: 6.6% for intraobserver difference and HC: 4.9%, AC: 8.8%, FL: 11.1 for interobserver
difference)31(�gure 6). Visual assessment of the Bland-Altman plots shows random artifactual bias for
every parameter, the variability increasing with the size of the parameter. However, our results also show
constant bias for SDP and FL, the predicted measurements for both parameters being consistently
greater than those of the physicians.

This over-expectation of the femur segmentation by the model can be mitigated by reviewing the images
manually. By selecting images with abnormal results, we found (�gure 7) that the model often selected
planes showcasing strictly horizontal femurs, and that the predicted calipers were placed avoiding the
grand trochanter in accordance with measurement guidelines in contrast to some of the participating
physicians32.

 As for the SDP discrepancy, it appears as though the model actually detected deeper pockets not
selected or measured by the clinician. However, the model’s failure can also be explained by a slight
angulation of the probe from 90° results in a larger antero-posterior pocket diameter at the time of
examination which will be construed as the SDP by our approach (�gure 7).

The ICC for each measurement was high (>0.9 for all parameters apart from SDP) showing excellent
reliability of the performed measurements: AC = 0.982, HC = 0.987, BPD = 0.975, FL = 0.945, GA = 0.978,
EFW = 0.9713, SDP = 0.692.
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The MAE for each biometric parameter was of 0.67 ± 0.69 cm for HC, 0.33 ± 0.22 cm for BPD, 0.27 ±0.40
cm for FL, 0.91 ± 0.81 cm for AC, 9.85 weeks ± 14.36 days for GA, 147.18 ± 177.97 g for the EFW and
1.46 ± 1.10cm for SDP (table 2).

The FUVAI model is the closest one to our approach for end-to-end automated biometric assessment
from cine-loops and showed similar performances to those of trained sonographers14.

We computed the MAE of each parameter using the open source FUVAI model developed by Plotka et
al.14 and compared them with our approach (table 2). 

It showed inferior MAE compared with our approach for every biometric parameter except for BPD. We
also note that our approach was able to correctly detect the entirety of the corresponding biometry plane
while FUVAI failed to do so.

The MAE between the predicted SDP and the measured SDP was also lower than the one reported by Cho
et al33 with their state of the art model for AF pocket segmentation: AF-net (1.46 cm with our approach vs
2.666 cm for Cho et al33 on a retrospectively annotated data-set). 

There were no cases of oligohydramnios in the prospective set and 7 cases (7.07%) of polyhydramnios.
The sensitivity and speci�city of the models at detecting polyhydramnios was 86.6%, and 85.7%
respectively when comparing them to the experts’ estimation. 

The models’ estimated biometric parameters were computed during the prospective phase of the study at
the earliest time after each examination was complete. No adverse effect was reported during the entirety
of this study.

Table 2: Mean Absolute Error (MAE) for each predicted biometric value, EFW, and GA compared to
clinicians and state of the art model FUVAI showing superior correct detection rates and lower MAE with
our approach, except for the BPD measurement.

Discussion
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In this study, we successfully developed an end-to-end approach to automate FB and AFV estimations
from ultrasound cine-loops using the ISUOG quality criteria for standard biometry planes with
performances similar to expert operators. These two tasks are part of the six fundamental items listed by
the ISUOG in the recently updated practice guideline for the routine mid-trimester scan35. They allow early
detection of life threatening conditions such as FGR, oligohydramnios and polyhydramnios that are
associated with increases of the risk of fetal mortality by respectively 19, 5 and 3 fold36–38. The 95%
limits of agreement expressed in percentage between the models measurements and the doctors for AC,
HC, FL and SDP were narrower than both reported intra- and inter-observer variability for human expert
sonographers13,31. The difference between the US machines, the operators and the healthcare facilities in
the retrospective and the prospective data indicate that the developed models are generalizable.
Furthermore, our deterministic method has the advantage of always giving the same output given the
same cine-loop which is not the case for human operators. This means that AI can reliably assess fetal
growth status and potentially detect AFV abnormalities on fetal US cine-loops automating the third of the
six items showcased in the ISUOG guidelines; and has the potential to address the shortage of
sonographers in countries of the Global South.

HC, BPD, AC and FL have been shown to be more reliable and reproducible amongst expert operators than
SDP measurement with intra and inter CC > 0.990 amongst expert sonographers and clinically acceptable
95% limits of agreement31,39. Our models showed intra CC superior to 0.94 for all the biometry metrics
(AC = 0.982, HC = 0.987, BPD = 0.975, FL = 0.945) and reached narrower 95% limits of agreement than
those reported in studies assessing their reliability and reproducibility between human sonographers. 

The models we developed were speci�cally designed to extract the best biometric planes according to the
ISUOG criteria.   Although other models have been developed to automate quality control of 2D fetal
ultrasound images through anatomical structures recognition, our study is the �rst study to explicitly use
the ISUOG quality criteria speci�cally for biometry planes classi�cation40,41. Such an approach, if
integrated in the clinical work�ow, could be used to automate the biometry plane's quality control. It could
allow fast inexpensive quality audits, accelerate the work�ow of trained sonographers, and be a
pedagogical tool to the sonographer in-training. This could prove particularly useful in resource stranded
regions such as Africa, where only 38.3% of fetal US operators have received formal training, and only
40.4% of them have received a short theoretical course3. 

A similar study to ours compared the performances of a multi-task deep neural network (DNN) on FB
assessment, testing it on 50 free-hand ultrasound videos with results comparable to those of trained
sonographers. Our models outperformed the one described in the study (FUVAI)14 when comparing
proximity of the results showcased by the model vs sonographers expressed in MAE (table 2) even if the
DICE score coe�cients and IoU were lower for the same tasks potentially indicating a greater
generalizability of our models. FUVAI’s choice of standard biometry planes didn’t rely on the quality of the
plane but rather on the con�dence of the model when selecting it; in other words, on how closely it
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resembled images from the training set which are not necessarily the best standard planes according to
the ISUOG guidelines. 

Another vast prospective study by Pokaprakarn et al.42  took an original approach and assessed the
performance of a DNN to estimate GA from blind loops taken by non-trained operators.  The DNN proved
to be more accurate than expert sonographers at estimating GA with an MAE of 3.9±0.12 days vs 9.85
weeks ± 14.36 days with our approach which could be a game changer in resource stranded
environments. Due to the nature of DNNs and the choice of blind sweeps, it is challenging to get a sense
of how the model came up with its output and impossible to extract AC or EFW for FGR risk assessment.
 Instead, our models mimic trained sonographers thanks to the separation of the FB work�ow in
classi�cation, quality scoring and segmentation tasks. They are thus understandable, errors in the
models’ outputs being easily detectable by sonographers. 

Our approach for AFV assessment is vastly more reliable with limits of agreement of only ± 26% and an
ICC of 0.692 for SDP measurement. SDP estimation has the widest variability with reported inter-observer
limits of agreements of -51% to + 52% and an ICC of 0.4213,43. This high variability amongst human
operators might be explained by the “subjective” choice of the SDP. We brought the subjective choice
closer to an objective one by segmenting and measuring every single AF-pocket in a given cine-loop. In
contrast, several studies present automated techniques to segment AF-pockets and measure the pocket’s
depth. Cho et al.33, for example, developed a CNN showcasing results similar to those of sonographers in
segmenting AF-pockets (DICE similarity coe�cient : 0.877 ± 0.086) and with a MAE of 2.666 ± 2.986 cm  
in the measurement of the pocket’s depth versus a DICE score of 0.783 in our study but a MAE of 1.46 ±
1.10cm on prospectively acquired video loops. However, these come from retrospective studies using 2D
�xed images, only automating the segmentation part of the clinical work�ow of AFV assessment. Ours
proved to be clinically more precise and useful as they detected polyhydramnios with a sensitivity and
speci�city of 86.6%, and 85.7% respectively .

To the best of our knowledge, our study is the �rst one to prospectively assess the performance of a
model aimed at AFV estimation on US videos. In the context of deployment, clinicians could validate the
image selected by the model, potentially correcting an error they or the model committed, or scroll through
the selected pockets until a satisfying one is found. Conversely this approach could be compatible with
AFV assessment from blind repeated cranio-caudal perpendicular sweeps allowing even minimally
trained healthcare workers to perform it.

The limits of our study include the use of cine-loops acquired by one expert operator per examination to
compare the performances of the models with those of the physicians. Comparing their performances
from US cine-loops acquired from sonographers in training, with those of expert operators for each US
scan would give a better assessment of their intended use. 

Methods
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Models and training

In this study, we �netuned different MASK-RCNN segmentation models on the retrospective data. The
MASK-RCNN architectures performance supremacy as well as their easy generalization to other tasks
have been proven24,25. For the segmentation of the relevant biometric plane, 30249 annotated
images were used, (10527 brains, 10227 abdomens and 9495 femurs). For the segmentation of the AF-
pockets, only 3773 images were manually annotated with polygons by the experts out of 6199 that were
annotated as containing AF-Pocket from the total number of 11926 images. The segmentation models
were trained with 80% of the data, validated with 10% and tested with 10%. We also �netuned three
classi�cation models (INCEPTIONV3, RESNET50V2 and VGG16) to detect the quality criteria of the
abdomen and brain plans with annotated images and to classify 11926 annotated images as containing
AF pockets or not. The classi�cation models were trained with 60% of the data, validated with 20% and
tested with 20% (Figure 1).

Study design 

We validated the DL models on prospectively consecutively acquired transabdominal US videos from
pregnant patients (>18 years, evolutive pregnancy > 14 weeks, non-emergency related scan indication,
written consent obtained) gathered at four health care centers from October 2021 to April 2022 by 7
different radiologists and obstetricians (experience in fetal US > 10 years) and annotated during the
examination using the machine’s ellipse and caliper facilities. The participating physicians were asked to
measure HC, BPD, AC, and FL following the ISUOG criteria as well as the single deepest AF-pocket (SDP)
to assess AFV. 

On top of their routine examination, the physicians had to take three additional cine-loops containing all
the standard biometry planes, and a cine-loop containing all AF pockets: an axial cephalic loop going
from the base of the skull to the vertex, an axial abdominal loop going from the four-chamber view of the
heart to a cross section of the kidneys, a sagittal femur loop, and an amniotic loop sweeping
perpendicularly through all the right, then the left AF pockets (�gure 1).

The physicians had no knowledge of the predicted values for all biometric parameters until the end of the
study, the team evaluating the models’ performances was also tasked to gather the prospective data, and
hence had access to the predicted and measured values for each. On the modeling side, the best
segmentation and classi�cation models that were trained on retrospective data were run on each video to
extract HC, BPD, AC or FL measurements depending on the plane. All the detected AF-pockets on the
“amniotic” cine-loops were segmented and their depth computed, retaining the deepest one as the
predicted SDP. This approach is directly inspired by the standard steps taken by expert-trained
sonographers to select the single deepest pocket. They consist of the following tasks: 1) Sweep through
all AF-pockets, 2) Subjectively select the SDP, 3) Measure the SDP’s depth. Oligohydramnios was de�ned
as a SDP < 2 cm and polyhydramnios as a SDP > 8 cm28.

Evaluation and statistical analysis
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DICE score coe�cients and Intersection of Union (IoU) were computed for the MASK-RCNNs on the
retrospective dataset. For the classi�cation tasks, the receiving operating characteristics (ROC) curves
were computed.

 The intended sample size was estimated at 122 patients with all corresponding measurements and cine-
loops correctly performed. We computed the mean absolute errors (MAE) between the models’
measurements and the operators on the prospective cine-loops using the R package ‘Metrics’ (version
0.1.4 ) of R software (R version 4.2.1). Intraclass correlation coe�cients (ICC) were calculated using the
Package ‘merTools’ (version 0.5.2). ICC is a desirable measure of reliability that re�ects both the degree of
correlation and agreement between measurements.  Wilcoxon rank sum test was calculated  for each
measurement using the ‘PairedData’ (version 1.1.1) R package. We also compared the performance of our
approach to FUVAI14 model using the percentage of correctly classi�ed planes and MAE using the R
package ‘Metrics’ (version 0.1.4 ). Bland-Altman plots were used for the visual assessment of the models’
reliability and the 95% limits of agreement were calculated and expressed in percentage using the ‘blandr’
package (version 0.5.1) of the R software. Firstly, The measurements from the operators and the model
were passed to the blandr.statistics function to generate Bland-Altman statistics. Afterwhich, plots were
generated using the package ggplot2 (version 3.3.6).  Assessment of the models’ performances was
carried alongside prospective data collection. Approval for this study was granted by the Institutional
Review Board of Oujda’s Faculty of Medicine (Comité d’Ethique pour la Recherche Biomédicale d’Oujda).

The full protocol of this study can be found on clinicaltrials.gov under the ID: NCT05059093. This study
was funded by Deepecho.inc
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Figure 1

Summary of the retrospective data used during the segmentation and classi�cation tasks along with the
data amount used for training, validation, and testing .
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Figure 2

Bar and heatmap plots showing the overall DICE and IoU scores of four �netuned MASK-RCNN models
(R_101_C4_3x, R_101_DC5_3x, R_50_C4_3x, R_50_DC5_3x) for the segmentation of the abdominal,
femoral and brain planes on the retrospective test set. The bar plot shows the segmentation
performances on the three biometric structures and the heatmap plots show the DICE (left) and IoU (right)
scores per structure. The R_50_DC5_3x model achieves the best performance with a DICE score of 0.89
and IoU score of 0.82. The segmentation of the brain achieved the best performance with a DICE score of
0.95 and IoU score of 0.91.
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Figure 3

Comparison of the receiver operating characteristics (ROC) curves of three �netuned models
(INCEPTIONV3, RESNET50V2 and VGG16) for the brain and abdominal planes classi�cation using their
respective quality criteria (kidneys not visible (A_KN), portal sinus visible (A_PS), stomach bubble visible
(A_SB), abdominal plane symmetry (A_SYM), brain plane symmetry(B_SYM), cerebellum not visible
(B_CB), cavum septum visible (B_CS), posterior horn of lateral ventricle visible (B_PVV) and thalami
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visible (B_TH)) on the retrospective test set. The top row shows the classi�cation per model and the
bottom row shows the results per quality criteria. Overall, the three models show similar results for the
cephalic plane quality criteria and INCEPTIONV3 shows the best results for the abdominal criteria with an
average AUC of 0.86.

Figure 4

ROC curve and bar plot of the AFP classi�cationand segmentation respectively on the retrospective test
set. a) AUC of three �netuned models for the AFP classi�cation. The results show equivalent AUC scores
of 0.89. b) DICE and IoU scores of seven �netuned MASK-RCNN models for the AFP segmentation. The
results show that 'X_101_32x8d_FPN_3x' achieved the best performance with a DICE score of 0.78 and an
IoU of 0.71.
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Figure 5

Study Flow Chart
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Figure 6

Flow chart of the end-to-end automated extraction of biometric parameters from ultrasound cine-loops. In
every cine-loop, all standard biometry planes are detected, the relevant anatomical structures segmented,
then the quality criteria of each plane are assessed and the highest scoring plane is selected. There is no
quality assessment in the case of the AF volume assessment, the AF pocket with the larger depth is
selected from the cine loop.
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Figure 7

Examples of larger predicted (left) than measured (right) Femur Lengths (FL) and Single Deepest Pockets
(SDP) on the same patient.
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Figure 8

Bland-Altman plots showing the variability between the models and the doctors HC, FL, EGA, AC, AF
(Single Deepest Pocket), BDEFW
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